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This is the final report of the research project entitled “3-D Radar Compression Algorithm Development 

for Reconfigurable Processing.”  During this period, the project has supported the Principal Investigator 

to supervise two graduate students to study two technical problems related to wavelet-based image 

compression.  In the remainder of this document, we report the results of our research. 

 

A.  Technical Results 
 

Our research has been on two topics.  One is in the wavelet-based image (2-D) and video (3-D) denoising, 

and the other is in feature selection for object tracking using the Support Vector Machine (SVM) 

approach.  The activities on each of the topics are described separately below. 

 

A.1 Wavelet Transform for Denoising 
 

Image denoising is a difficult technical problem and has been studied for a long time.  It becomes very 

necessary for image compression because noise consumes bits but does not contribute to the quality.  

Only when the noise is removed can image compression become more efficient and produce better quality 

of the image.  Conventional approaches use low-pass filters to remove the high-frequency component of 

the noise which produce non-optimal results because many image features have high-frequency 

components too.  We have developed a feature-based wavelet shrinkage algorithm for both image and 

video denoising which has produced very good results.  The new method has two advantages: 

 

1. The algorithm is based on wavelet transform which is also the fundamental tool for image compression 

including radar images; and, as a result, not so much new software has to be developed. 
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2. Denoising is based on the features, not on the frequency; consequently, high-frequency components of 

an image are not removed if they are judged to be features and that contributes to the quality of the 

image. 

 

Furthermore, our wavelet shrinkage algorithm is also extended to video, i.e., denoising in both spatial and 

temporal domains. 

 

A.1.1 Wavelet Shrinkage Algorithm for Image Denoising 
 

The wavelet shrinkage algorithm for image denoising includes a few steps.  First, wavelet transform is 

applied to a corrupted image to decompose the image into multiresolution subbands.  Next, wavelet 

coefficients in each subband are examined according to two criteria: 

 

1. If a coefficient is larger than a threshold value to represent the features of the image, it is kept; 

otherwise, it is considered as noise and is removed. 

2. For the remaining coefficients, the algorithm further checks to see if each coefficient is supported by 

its neighbors.  If it is, the coefficient is kept; otherwise, it is removed. 

 

Finally, the remaining coefficients are used to reconstruct the image which is the denoised image.  The 

new method uses threshold and support of a wavelet coefficient to determine its usefulness in the image 

reconstruction.  The two parameters are closely related to features; therefore, the algorithm is a feature-

based denoising algorithm. 

 

The success of the algorithm depends on the optimal selection of τ (threshold) and s (support), 

respectively.  These two values are determined using the following two equations: 
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    τ = aτσn+bτ      (1) 

 

    s = asσn+bs.      (2) 

 

where as, aτ, bs, and bτ are parameters to be determined, and σn is the estimated noise level of the image.  

We use a set of test images, which serve as training samples, to determine the four parameters.  We use a 

number of training images which are corrupted by a known level of noise then we optimize the quality of 

the denoised image by varying  as, aτ, bs, and bτ , respectively.  Those values which produce the best 

quality of the denoised images are used by as, aτ, bs, and bτ in equations (1) and (2).  Once the four 

parameters are determined, the above two equations are universally used to denoise other images 

regardless of the level of noise and the content of the image. 

 

The principle governing this parameter selection approach is called machine learning.  The “machine” 

determines the value of parameters from n training samples represented by vector Vi, i = 1, …n then 

assume that the space spanned by the training samples covers all types of images. 

 

A.1.2  The Performance of the Wavelet Shrinkage Algorithm for Image 
Denoising 
 

The new denoising algorithm is compared with a number of existing denoising algorithms.  The result is 

in favor of the new one.  The Peak-Signal-to-Noise-Ratio (PSNR) of a noise-corrupted image Pepper is 

processed by various denoising methods.  As shown in the next table, our method has a higher average 

improvement in PSNR than any of the existing methods. 
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     “Peppers” Image 

 

Image Input PSNR 22.6 19.6 16.6 13.6 Average 

Our Algorithm 31 28.98 27.17 25.46 28.15 

Pizurica 3-band 

algorithm 

30.20 28.60 27.00 25.20 27.75 

Pizurica 2-band 

algorithm 

29.90 28.20 26.60 24.90 27.40 

Malfait and Roose 

algorithm 

28.60 27.30 26.00 24.60 26.63 

Mallat and Hwang 

algorithm 

28.20 27.30 27.10 24.60 26.80 

Matlabs’s Sp. 

Adaptive Wiener 

29.00 27.10 25.30 23.30 26.18 

  

The references of the other methods listed in the above table can be found in the attached paper entitled 

“Feature-Based Wavelet Shrinkage Algorithm for Image Denoising.” 

 

A.1.3 Wavelet Shrinkage Algorithm for Video Denoising 
 

The feature-based wavelet shrinkage algorithm is also applied to video including both spatial (for 

individual frames) and temporal (for multiple consecutive frames) domains.  By using the same principal, 

the features in the temporal domain are also considered in video noise reduction.  The features in the 

temporal domain are the motion of objects.  The algorithm takes the similar steps:  
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a. apply the 2-D wavelet shrinkage algorithm to each individual image,  

b. apply the wavelet transform to the 2-D denoised images in the temporal domain, 

c. use threshold and support to determine if the wavelet coefficients in the temporal domain should be 

kept or removed, and 

d. reconstruct the video using the remaining wavelet coefficients which produced the denoised video. 

 

After the wavelet transform in the temporal domain, the magnitude of the wavelet coefficient is compared 

with a threshold τz as mentioned in step c above.  The threshold is determined by the following equation: 

 

    τz = ασn + β Ml      (3)  

 

where σn is the estimated level of noise, and Ml is the motion index of the video sequence.   The higher 

the level of noise and the motion index, the greater the threshold.  From (3), one can see that even with σn 

and Ml given, one still has to find α and β to obtain the threshold.  To find the best α and β, we use the 

same machine learning approach as for image denoising; that is, a number of training video samples are 

first corrupted by a known level of noise.  We optimize the quality of denoised video by using equation 

(3) and by varying α and β, respectively.  The α and β which produce the best denoising effect are chosen 

for use in the equation (3) for denoising corrupted videos universally.  We assume that the space spanned 

by the training samples covers a wide scope of videos.  The question is what kind of videos one should 

use to train the machine such that the machine trained is general enough.  This question still needs to be 

studied in both theory and experiments. 
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We have produced three papers (by Eric J. Balster, Yuan F. Zheng, and Robert L. Ewing) for this 

denoising work.  The details of the algorithms described above can be found in the three papers which are 

attached as an appendix of this report.   

A.2  Feature Selection for Efficient Object Classification and Tracking  
     

A.2.1 Motivation 
 

Another topic we studied for this project is video object segmentation and tracking.  The idea is to track 

video objects in the video sequence such that objects can be grouped together for efficient 3-D object-

based compression.  A paper on the video object segmentation and tracking entitled “A GM-Based Multi-

Layer Method for Object Tracking In Video Sequence” was presented at the IEEE International 

Conference on Information Technology: Research and Education, August 10-13, 2003 in Newark, New 

Jersey.  Based on that work, our new study has been on optimal feature representation of video objects.   

The purpose is to reduce the dimension of features which have to be used to represent and classify the 

object.  As a result, the computation for training the classifier, which is based on SVM, can be 

significantly reduced. 

 

For representing a video object, we divide a video frame into blocks and name each block the object 

block, if the block is a part of the object, and background block, if it is a part of the background.  The 

features of each block are extracted by applying the Discrete Cosine Transform (DCT) to each block.  The 

run time analysis shows that the feature extraction operation takes nearly 99.7% of the whole run time for 

training the SVM, for which DCT is the major contributor.  To further reduce the processing time, we 

need a feature selection method to select only a subset of the DCT coefficients that are most essential for 

object/background separation.  
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In general, feature selection approaches can be grouped into two categories:  filter methods and wrapper 

methods [1].  The major difference between the two is that the wrapper methods, which evaluate the 

“goodness” of the selected feature subset directly by the classification accuracy, are classifier-dependent 

while the filter methods are not.  On the contrary, the filter methods estimate the classification 

performance by some indirect assessments such as distance measurements, which reflect how well the 

classes separate from each other.  Intuitively, the wrapper methods may yield better performance and 

actually many experimental results reported so far are in favor of the wrapper methods [2, 3].  However, 

given the fact that training just a single SVM would impose a lot of computation when the number of 

training samples is large, the integration of SVM with the wrapper methods, which calls for multiple 

times of training, is computationally infeasible.  We, by taking the advantage of the existence of support 

vectors of SVM, designed an expedited wrapper method for SVM which is named Filtered and Supported 

Sequential Forward Search (FS_SFS). 

 

A.2.2  The FS_SFS Search Algorithm 
 

The outline of FS_SFS is shown in Fig. 1.  The filtering part in our approach, acting in a generic way 

similar to a filter method, ranks features without involving the classifier.  The features with relatively 

high ranks are considered as “informative” feature candidates and then re-studied by the wrapper part that 

further investigates their contributions to a specific classifier.  In other words, some features are discarded 

before the wrapper part begins; consequently, the total number of training is reduced.  Furthermore, an 

active training set is dynamically maintained as the estimated candidates of the support vectors and each 

SVM are trained by using this reduced subset rather than the whole original training set.  In this way, we 

are able to reduce the training complexity of a single SVM.  With the framework determined, the feature 

selection problem is reduced to a search problem to find the optimal subset, and we adopt a suboptimal 
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search method called sequential forward search (SFS) algorithm for its simplicity and effectiveness 

proven in many applications. 

 

A.2.3 The Performance of the FS_SFS Method 
 

We test FS_SFS on four real data sets that are from the widely used UCI (University of California, Irvine) 

repository of machine learning [4], and the results are very encouraging. The preliminary results show 

that FS_SFS is able to reduce the computation time of SFS by 30% without sacrificing the accuracy of 

either the selection or the classification.  Our next plan is to apply FS_SFS to our classification-based 

object extraction approach.  As mentioned before, the DCT is the major contributor to the run time and 

we want to skip the transformation of some DCT coefficients that are not essential for object/background 

separation.  By doing so, the number of DCT operations can be reduced and, as a result, better efficiency 

can be achieved.  The details of this new algorithm can be found in the attached papers by Yi Liu and 

Yuan F. Zheng. 

 

Fig. 1:  The structure of the FS_SFS method 

 
Feature 
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wrapper part filter part 

original feature  
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B.  Products 

B.1 Papers 
 

Five technical papers have been produced by this research and are listed below: 

1. Eric J. Balster, Yuan F. Zheng, and Robert L. Ewing, “Feature-Based Wavelet Shrinkage Algorithm 
for Image Denoising,” submitted to IEEE Transactions on Signal Processing for publication. 

2. Eric J. Balster, Yuan F. Zheng, and Robert L. Ewing, “Combined Spatial and Temporal Domain 
Wavelet Shrinkage Algorithm for Video Denoising,” submitted to IEEE Transactions on Circuits and 
Systems for Video Technology for publication.  

3. Eric J. Balster, Yuan F. Zheng, and Robert L. Ewing, “Combined Spatial and Temporal Domain 
Wavelet Shrinkage Algorithm for Video Denoising,” accepted for presentation at IEEE International 
Symposium on Communication Systems, Networks and Digital Signal Processing, Newcastle, UK, 
July 20-22, 2004. 

4. Yi Liu and Yuan F. Zheng, “FS_SFS: A Novel Feature Selection Method for Support Vector 
Machine,” submitted to Computer Vision and Image Understanding for publication. 

5. Yi Liu and Yuan F. Zheng, “FS_SFS: A Novel Feature Selection Method for Support Vector 
Machine,” accepted for presentation at IEEE International Conference on Acoustics, Speech, and 
Signal Processing, Montreal, Quebec, Canada, May 17-21, 2004. 

 

B.2 Software Package 
 

The wavelet compression software, developed by the OSU wavelet compression group, has been 

modified to include the image and video denoising algorithms.  Real-time demonstration of the software 

for video compression and decompression was performed successfully.  Compression ratio is significantly 

increased with the denoising algorithm, and the quality of originally corrupted images is improved as 

well. 
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C.  Summary 
 

In this research project, the OSU wavelet compression group in the Department of Electrical and 

Computer Engineering studied two technical topics:  feature-based wavelet shrinkage algorithm for image 

and video denoising and feature selection for efficient training of SVM.  We derived mathematical 

formulations for both algorithms as well as conducted experiments to verify the algorithms.  Both 

algorithms have generated better results than the existing and conventional methods.  These two 

algorithms will improve the efficiency of our wavelet compression software significantly.  The video 

object classifying algorithm may also be used in target recognition and tracking that may be significant to 

many Air Force applications.  We have also produced five technical papers for this project.  In addition, 

our software is improved by integrating the denoising algorithm. 
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Abstract

A selective wavelet shrinkage algorithm for digital image denoising is presented. The performance of this method

is an improvement upon other methods proposed in the literature and is algorithmically simple for large computa-

tional savings. The improved performance and computational speed of the proposed wavelet shrinkage algorithm

is presented and experimentally compared with established methods. The denoising method incorporated in the

proposed algorithm involves a two-threshold validation process for real-time selection of wavelet coefficients. The

two-threshold criteria selects wavelet coefficients based on their absolute value, spatial regularity, and regularity

across multiresolution scales. The proposed algorithm takes image features into consideration in the selection pro-

cess. Statistically, most images have regular features resulting in connected subband coefficients. Therefore, the

resulting subbands of wavelet transformed images in large part do not contain isolated coefficients.

In the proposed algorithm, coefficients are selected due to their magnitude, and only a subset of those selected

coefficients which exhibit a spatially regular behavior remain for image reconstruction. Therefore, two thresholds

are used in the coefficient selection process. The first threshold is used to distinguish coefficients of large magnitude,

and the second is used to distinguish coefficients of spatial regularity. The performance of the proposed wavelet

denoising technique is an improvement upon several other established wavelet denoising techniques as well as being

computationally efficient to facilitate realtime image processing applications.

Keywords—Image denoising, selective wavelet shrinkage, two-threshold criteria.

I. I NTRODUCTION

The recent advancement in multimedia technology has promoted an enormous amount of research in the area of

image and video processing. Included in the many image and video processing applications such as compression,

enhancement, and target recognition are preprocessing functions for noise removal. Noise removal is one of the

most common and important processing steps in many image and video systems.

Because of the importance and commonality of preprocessing in most image and video systems, there has been

an enormous amount of research dedicated to the subject of noise removal, and many different mathematical tools

have been proposed. Variable coefficient linear filters [5, 17, 20, 27], adaptive nonlinear filters [9, 16, 18, 28], DCT

based solutions [11], cluster filtering [26], genetic algorithms [25], fuzzy logic [12,22], etc. have all been proposed

in the literature.

The wavelet transform has also been used to suppress noise in digital images. It has been shown that the reduction

of absolute value in wavelet coefficients is successful in signal restoration [15]. This process is known as wavelet

shrinkage. Other more complex denoising techniques select or reject wavelet coefficients based on their predicted

contribution to reconstructed image quality. This process is known asselectivewavelet shrinkage, and many works

have used it as the preferred method of image denoising. Preliminary methods predict the contribution of the wavelet

coefficients based on the magnitude of the wavelet coefficients [24], and others based on intra-scale dependencies

of the wavelet coefficients [3, 7, 13, 15]. More recent denoising methods are based on both intra- and inter-scale

coefficient dependencies [6,8,10,14,19].

Mallat and Hwang prove the successful removal of noise in signals via the wavelet transform by selecting and

rejecting wavelet coefficients based on their Lipschitz (Hölder) exponents [15]. The Ḧolder exponent is a measure

February 17, 2004
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of regularity in a signal, and it may be approximated by the evolution of wavelet coefficient ratios across scales.

Thus, this regularity metric used in selecting those wavelet coefficients which are to be used in reconstruction, and

those which are not. Although this fundamental work in image denoising is successful in the removal of noise, its

application is broad and not focused on image noise removal, and the results are not optimal.

Malfait and Roose refined the selective shrinkage denoising approach by applying a Bayesian probabilistic for-

mulation, and modeling the wavelet coefficients as Markov random sequences [14]. This method is focused on

image denoising and its results are an improvement upon [15]. The Lipschitz (Hölder) exponents are roughly

approximated by the evolution of coefficient values across scales, i.e.

ml,n = 1
p−l

∑p−1
k=l

∣∣∣λk+1,n

λk,n

∣∣∣,

whereml,n is the approximated Ḧolder exponent of positionn of scalel andλk,n is the wavelet coefficient of scale

k and positionn. The rough approximation is refined by assuming that the coefficient values are well modeled

as a Markov chain, and the probability of a coefficients contribution to the image can be well approximated by

the Hölder exponents of neighboring coefficients. Coefficients are then assigned binary labelsxk,n of positionn

depending on their predicted retention for reconstruction(xk,n = 1), or predicted removal(xk,n = 0). The binary

labels are then randomly and iteratively switched untilP (X|M) is maximized, wherexk,n ∈ X andmk,n ∈ M .

The coefficients are modified byλnew
k,n = λk,nP (xk,n = 1|M), and the denoised image is formed by the inverse

wavelet transform of the modified coefficients. Each coefficient is reduced in magnitude depending on the probable

contribution to the image, i.e.P (xk,n = 1|M).

Later, Pizurica, et al. ( [19]) continued on the work done by [14] by using a different approximation of the Hölder

exponent given by

ρl,n = 1
p−l

∑p−1
k=l

∣∣∣ Ik+1,n

Ik,n

∣∣∣

where

Ik,n =
∑

t∈C(k,n) |λk,t|.

ρk,n is the approximation of the Ḧolder exponent, andC(k, n) is the set of coefficients surroundingλk,n. This

work applies the same probabilistic model as [14] using the new approximation of the Hölder exponent. Coef-

ficients are assigned binary labels,xk,n, depending on their predicted retention for reconstruction(xk,n = 1),

or predicted removal(xk,n = 0). The binary labels are then randomly and iteratively switched untilP (X|M)

is maximized. Unlike [14], the significance measure of a coefficient,M , is not merely its Ḧolder exponent, but

evaluated by the magnitude of the coefficients as well as its Hölder approximation, i.e.fM |X(mk,n|xk,n) =

fΛ|X(λk,n|xk,n)fR|X(ρk,n|xk,n). Thus a joint measure of coefficient significance is developed based on both

the Hölder exponent approximation and the magnitude of the wavelet coefficient. As in [14], the coefficients are

modified byλnew
k,n = λk,nP (xk,n = 1|M).

Although both algorithms in [14] and [19] show promising results in denoised image quality, the iterative proce-

dure necessary to maximize the probabilityP (X|M) adds computational complexity making the processing times
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of the algorithms impractical for most image and video processing applications. Also, the Markov Random Field

(MRF) model used in the calculation ofP (X|M) is not appropriate for analysis of wavelet coefficients because it

ignores the influence of non-neighboring coefficients. The MRF model is strictly used for simplicity and conceptual

ease [14].

From the review of the literature, one can see that image denoising remains to be an active and challenging topic

of research. The major challenge lies in the fact that one does not know what the original signal is for a corrupted

image. The performance of a method, on the other hand, can only be measured by comparing the denoised image

with its origin. In this paper, we propose a new denosing approach which consists of two components. The first

is theselective wavelet shrinkage methodfor denoising, and the second is a newthreshold selecting methodwhich

makes use of test images astraining samples.

In general, selective shrinkage methods are comprised of three processing steps. First, a corrupted image is

decomposed into multiresolution subbands via the wavelet transform. Next, wavelet coefficients are modified

based upon certain criteria to predict their importance in reconstructed image quality. Finally, the denoised image

is formed by reconstructing the modified coefficients via the inverse wavelet transform. The processing step of

most cost computationally in the methods of [14] and [19] and greatest importance in denoising performance is the

coefficient modification process, which calls for effective and efficient criteria to modify wavelet coefficients. To

improve performance, this paper presents a new coefficient selection process which uses a two-threshold criteria to

non-iteratively select and reject wavelet coefficients. The two-threshold selection criteria results in an effective and

computationally simple coefficient selection process.

The threshold selection method is presented which is based on minimizing the error between the wavelet coef-

ficients of the denoised image and the wavelet coefficients of an optimally denoised image produced by a method

using supplemental information. The supplemental information provided produces a denoised image that is far su-

perior than any method which does not utilize supplemental information. Thus, the image produced by the method

utilizing supplemental information is referred to as an optimally denoised image. Using several test cases, the

threshold values which produce the minimum difference between the wavelet coefficients of the denoised image

and the wavelet coefficients of the optimally denoised image are chosen as the threshold values for the general case.

The two-threshold coefficient selection method results in a denoising algorithm which gives improved results

upon those provided by [14, 19], but without the computational complexity. The two-threshold requirement inves-

tigates the regularities of wavelet coefficients both spatially and across scales for predictive coefficient selection,

providing selective wavelet shrinkage to non-decimated wavelet subbands.

Following the Introduction, Section II gives theory on the 2D non-decimated wavelet analysis and synthesis

filters. Section III then describes the coefficient selection process prior to selective wavelet shrinkage. Section

IV gives testing results for parameter selection. Section V gives the estimation algorithms for proper parameter

selection, and Section VI gives the results. Section VII concludes the paper.
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II. 2D NON-DECIMATED WAVELET ANALYSIS AND SYNTHESIS

To facilitate the discussion of the proposed method, non-decimated wavelet filterbank theory is presented. In

certain applications such as signal denoising, it is not desirable to downsample wavelet coefficients after decompo-

sition, as in the tradition wavelet filterbank. The spatial resolution of the coefficients is degraded due to downsam-

pling. Therefore, for the non-decimated case, each subband contains the same number of coefficients as the original

signal.

Let ak[n] anddk[n] be scaling and wavelet coefficients, respectively, of scalek and positionn. Also let h[·]
andg[·] be the filter coefficients corresponding to the low-pass and high-pass filter, respectively, of the wavelet

transform.

Thus,

αk[2k+1n] = ak[n]

λk[2k+1n] = dk[n],
(1)

whereαk[·] are the non-decimated scaling function coefficients, andλk[·] are the non-decimated wavelet coeffi-

cients. Equation 1 is substituted into the scaling analysis filterbank equation to find the non-decimated filterbank

equation:

ak+1 [n] =
∑

m h[m]ak[m− 2n]

αk+1 [2
k+2n] =

∑
m h[m]αk[2k+1(m− 2n)]

αk+1 [n] =
∑

m h[m]αk[2k+1m− n].

(2)

The2k+1 scalar introduced into Equation 2 is equivalent to upsamplingh[·] by 2k+1 prior to its convolution with

αk[·]. Similarly Equation 1 is substituted into the wavelet analysis filterbank equation to obtain

λk+1 [n] =
∑

m g[m]αk[2k+1m− n]. (3)

Figure 1 gives a block diagram of the non-decimated wavelet decomposition.

Fig. 1. Non-decimated wavelet decomposition

The synthesis of the non-decimated wavelet transform also differs from the downsampled case. From the wavelet

synthesis filterbank equation we obtain,

ak[2n] =
∑
m

h[2(n−m)]ak+1 [m] +
∑
m

g[2(n−m)]dk+1 [m]. (4)
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Substituting (p = n−m) we obtain,

ak[2n] =
∑

p

h[2p]ak+1 [n− p] +
∑

p

g[2p]dk+1 [n− p]. (5)

Substituting Equation 1 into Equation 5,

αk[2k+2n] =
∑

p h[2p]αk+1 [2
k+2(n− p)]

+
∑

p g[2p]λk+1 [2
k+2(n− p)]

, (6)

and
αk[n] =

∑
p h[2p]αk+1 [n− 2k+2p]

+
∑

p g[2p]λk+1 [n− 2k+2p].
(7)

Looking at Equation 7 samples are being thrown away by downsamplingαk+1 [·] andλk+1 [·] by 2 prior to convolu-

tion. Because the downsampling in the analysis filters is eliminated, a downsample by 2 is shown in the synthesis

equation, Equation 7. If a downsample by 2 is not performed, i.e. (m = 2p), then we must divide by 2 to provide

power equality. That is,

αk[n] = 1
2

∑
m h[m]αk+1 [n− 2k+1m]

+ 1
2

∑
m g[m]λk+1 [n− 2k+1m].

(8)

Figure 2 gives a block diagram of the non-decimated wavelet transform synthesis.

Fig. 2. Non-decimated wavelet synthesis

The above analysis is expanded to the two-dimensional case. For a 2-D discrete signal,f(·),

αll,k+1 [x, y] =
∑

n,m h[n]h[m]αll,k[2k+1m− x, 2k+1n− y]

λhl,k+1 [x, y] =
∑

n,m h[n]g[m]αll,k[2k+1m− x, 2k+1n− y]

λlh,k+1 [x, y] =
∑

n,m g[n]h[m]αll,k[2k+1m− x, 2k+1n− y]

λhh,k+1 [x, y] =
∑

n,m g[n]g[m]αll,k[2k+1m− x, 2k+1n− y],

(9)

where

αll,−1[x, y] = f(x, y). (10)

The four coefficient sets given in Equation 9 is referred to as the low-low band,αll,k+1 [·], the high-low band,

λhl,k+1 [·], the low-high band,λlh,k+1 [·], and the high-high band,λhh,k+1 [·]. The subbands are named due to the

order in which the scaling and/or the wavelet filters process the scaling function coefficients.
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For the synthesis off(·),

αll,k[x, y] = 1
4

∑
m,n h[m]h[n]αll,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n h[m]g[n]λhl,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n g[m]h[n]λlh,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n g[m]g[n]λhh,k+1 [x− 2k+1m, y − 2k+1n]

. (11)

Equation 9 is recursively computed to produce several levels of wavelet coefficients, and reconstruction of the 2-D

signal,f(·) is accomplished by the recursive computation of Equation 11.

The non-decimated wavelet transform has a number of advantages in signal denoising over the traditional deci-

mated case. One, each subband in the wavelet decomposition is equal in size, and thus it is more straightforward to

find the spatial relationships between subbands. Two, the spatial resolution of each of the subbands is preserved by

eliminating the downsample by two. Because of the elimination of the downsampler, information contained in the

wavelet coefficients is redundant, and this redundancy is exploited to determine the coefficients comprised of noise

and the coefficients comprised of feature information contained in the original image.

III. R ETENTION OFFEATURE-SUPPORTINGWAVELET COEFFICIENTS

One of the many advantages of the wavelet transform over other mathematical transformations is the retention

of the spatial relationship between pixels in the original image by the coefficients in the wavelet domain. These

spatial relationships represent features of the image and should be retained as much as possible during denoising.

In general, images are comprised of regular features, and the resulting wavelet transform of an image generates

few, large, spatially contiguous coefficients which are representative of the features given in the original image. We

refer to the spatial contiguity of the wavelet coefficients asspatial regularity.

The concept of spatial regularity has the similar function as that of signal regularity in previous denoising ap-

proaches for selecting the wavelet coefficients. The key difference is that spatial correlation of the features are

represented by connectivity of wavelet coefficients rather than statistical models such as Markov random sequences

[14, 19] or (Ḧolder) exponents [14, 15, 19] in previous methods. These models are often computationally compli-

cated and still do not reflect the geometry of the features explicitly. As a result the current method has a better

performance even with a much simpler computation.

Because of spatial regularity, the resulting subbands of the wavelet transform do not generally contain isolated

coefficients. This regularity can aid in deciding which coefficients should be selected for reconstruction, and which

should be thrown away for maximum reconstructed image quality. The proposed coefficient selection method in

which spatial regularity is exploited is shown as follows.

Assume that an image signal is corrupted with additive noise, i.e.

f̃(x, y) = f(x, y) + η(x, y), (12)

wheref(x, y) is the noiseless 2D signal,η(x, y) is a random noise function, and̃f(x, y) is the corrupted signal.
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The first step for selecting the wavelet coefficient is to form a preliminary binary label for each coefficient, which

collectively form a binary map. The binary map is then used to determine whether or not a particular wavelet

coefficient is included in a regular spatial feature. The wavelet transform off̃(x, y) generates coefficients,̃λ·,k[·],
from Equations 9 and 10.̃λ·,k[·] is used to create the preliminary binary map,I·,k[·].

I·,k[x, y] =





1, when |λ̃·,k[x, y]| > τ

0, else
, (13)

whereτ is a threshold for selectingvalid coefficientsin the construction of the binary coefficient map. Avalid

coefficientis defined as a coefficient,̃λ·,k[x, y], which results inI·,k[x, y] = 1; hence the coefficient has been

selected due to its magnitude. After coefficients are selected by magnitude, spatial regularity is used to further

examine the role of thevalid coefficient: whether it is isolated noise or part of a spatial feature. The number of

supporting binary values around a particular non-zero valueI·,k[x, y] is used to make the judgement. The support

value,S·,k[x, y], is the sum of allI·,k[·] which support the current binary valueI·,k[x, y]; that is, the total number

of all valid coefficientswhich are spatially connected toI·,k[x, y].

A coefficient is spatially connected to another if there exists a continuous path ofvalid coefficientsbetween the

two. Figure 3 gives a generic coefficient map. Thevalid coefficientsare highlighted in gray. From Figure 3 it can be

shown that coefficients A, B, C, and H do not support any othervalid coefficientsin the coefficient map. However,

coefficients D and F support each other, coefficients E and G support each other, and N and O support each other.

Also, coefficients I, J, K, L, M, P, Q, and R all support one another. Figure 4 gives the value ofS·,k[x, y] for each of

Fig. 3. Generic coefficient array

thevalid coefficientsgiven in Figure 3. A method of computingS·,k[x, y] is given in the Appendix.S·,k[·] is used

to refine the original binary mapI·,k[·] by

J·,k[x, y] =





1, when S·,k[x, y] > s,

or J·,k+1[x, y]I·,k[x, y] = 1

0, else

, (14)
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Fig. 4. Generic coefficient array, with correspondingS·,k values

whereJ·,k[·] is the refined binary map, ands is the necessary number of support coefficients for selection.J·,·[·] is

calculated recursively, starting from the highest multiresolution level, and progressing downward.

Equation 14 is equal to one when there exists enough wavelet coefficients of large magnitude around the current

coefficient. However, it also is equal to one when the magnitude of the coefficient is effectively large (I·,k[·] = 1)

but not locally supported (J·,k[·] = 0) only if the coefficient of the larger scale is large and locally supported

(J·,k+1 [·] = 1). The decision to use this criterion is in the somewhat rare case when a useful coefficient is not

locally supported. In the general case, wavelet coefficients of images are clustered together, but rarely they are

isolated. In [15], wavelet coefficients are modifiedonly by their evolution across scales. Regular signal features

contain wavelet coefficients which increase with increasing scale. Thus, if there exists a useful coefficient which

is isolated in an image, it is reasonable that a coefficient in the same spatial location of an increase in scale will be

sufficiently large and spatially supported. Thus, the coefficient selection method provided by Equation 15 selects

coefficients which are sufficiently large and locally supported as well as isolated coefficients which are sufficiently

large and supported by scale.

This type of scale-selection is consistent with the findings of Said and Pearlman [21], who developed an image

codec based on a ”spatial self-symmetry” between differing scales in wavelet transformed images. They discovered

that most of an images energy is concentrated in the low-frequency subbands of the wavelet transform. And because

of the self-symmetry properties of wavelet transformed images, if a coefficient value is insignificant (i.e. of small

value or zero), then it can be assumed that the coefficients of higher spatial frequency and same spatial location will

be insignificant. In our application, however, we are looking for significance rather than insignificance, so we look

to the significance of lower frequency coefficients to determine significance of the current coefficient. In this way,

the preliminary binary map is refined by both spatial and scalar support, given by equation 14.
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The final coefficients retained for reconstruction are given by

L·,k[x, y] =





λ̃·,k[x, y], when J·,k[x, y] = 1

0, else
. (15)

The denoised image is reconstructed using the supported coefficients,L,k[x, y] in the synthesis equation given in

Equation 11. Thus,

α̂ll,k[x, y] = 1
4

∑
m,n h[m]h[n]α̂ll,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n h[m]g[n]Lhl,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n g[m]h[n]Llh,k+1 [x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m,n g[m]g[n]Lhh,k+1 [x− 2k+1m, y − 2k+1n]

. (16)

Equation 16 is calculated recursively producing scaling coefficients of finer resolution untilk = −1. The denoised

image,f̂(·), is then given by

f̂(x, y) = α̂ll,−1[x, y]. (17)

α̂ll,k[·] are the reconstructed scaling function coefficients.

In general, natural and synthetic imagery can be compactly represented in few wavelet coefficients of large

magnitude. These coefficients are in general spatially clustered. Thus, it is useful to obtain selection methods

based on magnitude and spatial regularity to distinguish between useful coefficients which are representative of the

image and useless coefficients representative of noise. The two-threshold criteria for the rejection of noisy wavelet

coefficients is a computationally simple, non-iterative test for magnitude and spatial regularity which can effectively

distinguish between useful and useless coefficients.

IV. SELECTION OFTHRESHOLDτ AND SUPPORTs

The selection of thresholdτ and supports is a key component of the denoising algorithm. Unfortunately, the

two parameters cannot be easily determined for a given corrupted image because there is no information about the

decomposition between the original signal and the noise. We driveτ ands using a set of test images which serve

as training samples. These training samples are artificially corrupted by noise. The noise is then removed by a

series ofτ ands. The set ofτ ands which generates the best results is selected for noise removing in general. This

approach has its root in an idea called oracle ( [3]) which is described below.

An oracle is an entity which provides extra information to aid in the denoising process. The extra information

provided by the oracle is undoubtedly beneficial in providing substantially greater denoising results than methods

which are not furnished supplemental information. Thus, the coefficient selection method which uses the oracle’s

information is referred to as the optimal denoising method. By the optimal denoising method the threshold and

support can be selected using test images of which both original image and noise are known. The selected threshold

and support functions can then be selected for any corrupted images without supplemental information.
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An optimal coefficient selection process has been defined based on the original (noiseless) image. The optimal

binary mapJopt
·,k [·] is given by

Jopt
·,k [x, y] =





1, when |λ·,k[x, y]| > σn

0, else
, (18)

whereλ·,k[·] are the wavelet coefficients of the original (noiseless) imagef(·), andσn is the standard deviation

of the noise in the corrupted imagẽf(·). Thus, the extra information given by the oracle is the noiseless wavelet

coefficients,λ·,k[·]. The coefficients of the original image are used in coefficient selection process, but not in the

image reconstruction. The coefficients which are used in the reconstruction,Lopt
·,k [·], are given by,

Lopt
·,k [x, y] =





λ̃·,k[x, y], when Jopt
·,k [x, y] = 1

0, else
, (19)

whereλ̃·,k[·] are the wavelet coefficients of the noisy image.

The optimal coefficient map is used to create the optimal denoised image which is given by

α̂opt
ll,k[x, y] =

1
4

∑
m

∑
n h[m]h[n]α̂opt

ll,k+1
[x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m

∑
n h[m]g[n]Lopt

hl,k+1
[x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m

∑
n g[m]h[n]Lopt

lh,k+1
[x− 2k+1m, y − 2k+1n]

+ 1
4

∑
m

∑
n g[m]g[n]Lopt

hh,k+1
[x− 2k+1m, y − 2k+1n]

. (20)

Equation 20 is recursively computed for lesser values ofk until the optimal denoised image is achieved, where

f̂opt(x, y) = α̂opt
ll,−1[x, y]. (21)

α̂opt
ll,k[·] are the optimal scaling coefficients, andf̂opt(·) is the optimal denoised image. Figure 5 gives the denoising

results of the optimal denoising method when applied to the ”Lenna” image corrupted with additive white Gaussian

noise (AWGN). As shown in Figure 5, the optimal denoising method is able to effectively remove the noise from

the ”Lenna” image because of the added information given by the oracle. PSNR is calculated for performance

measurement and is given by

PSNR = 20log10

(
255√
mse

)
, (22)

where

mse =
1

WfHf

∑
x

∑
y

(
f̂(x, y)− f(x, y)

)2

. (23)

mse is the mean-squared error between the original imagef(·) and the denoised imagêf(·), andWf andHf are

the width and height of the image, respectively.

It is rather obvious that the optimal coefficient selection process is unattainable since no supplemental informa-

tion is provided by the oracle for corrupted images. Thus the optimal image denoising method is not possible for
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Fig. 5. Optimal denoising method applied to noisy ”Lenna” image. Left: Corrupted imagef̃(x, y), σn = 50, PSNR = 14.16 dB. Right:

Optimally denoised imagêfopt(x, y), PSNR = 27.72 dB.

practical implementation. However, the knowledge obtained by the optimal binary map,Jopt
·,k [·], is used to compare

with the refined coefficient map generated by the two-threshold criteria,J·,k[·], described in Section III. The coeffi-

cient selection method is based on the error between the optimal coefficient subband and the subband generated by

the two-threshold criteria. The error is given by

Error =
∑

p∈{hl,lh,hh},k,x,y (Jopt
p,k [x,y]⊕Jp,k[x,y])λ̃2

p,k[x,y]
∑

p∈{hl,lh,hh},k,x,y λ̃2
p,k[x,y]

, (24)

where⊕ is theexclusive ORoperation.

In the proposed coefficient selection algorithm, we use atraining sampleapproach. The approach starts with

a series of test images serving as training samples to derive the functions which determine the optimal set of the

values forτ ands as well as the type of wavelet used for denoising. Theoretically, we may represent each training

sample as a vectorVi, i = 1, n. Those training samples should span a space which covers more corrupted images

than the training samples:

S = Span{Vi; i = 1, ..n}. (25)

The original data and the statistical distribution of the noise are given for each of the training samples which are

corrupted. The optimal set of parameters can then be determined for the training samples using the approach

described earlier. Ideally, the space spanned by the training samples contains the type of the corrupted images

which are to be denoised. As a result, the same set can generate an optimal or close to optimal performance for the

corrupted images of same type. It is clear that more training samples will generate parameters suitable for more
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types of images, while a space of fewer training samples is suitable for a less types of images. In the following, we

will use some examples to illustrate this training approach. The test images are all 256x256 pixels. Starting from

Fig. 6. Test images.

the upper-left image and going clockwise, the images are ”Lenna”,”Airplane”, ”Fruits”, and ”Girl”. Each of the

images shown in Figure 6 is well known in the image processing community, and collectively represents as many

kinds of images as possible. In this way, theτ ands obtained will likely perform well in most cases.

A test is used to demonstrate the effectiveness of different wavelets in denoising. First, each of the four test

images is corrupted with AWGN at various levels. Next, the 2D non-decimated wavelet transform, given in Section

II, is calculated using several different wavelets. The wavelet coefficients are then hard thresholded using a threshold

T ranging from0 − 150, and the inverse wavelet transform is applied to the thresholded coefficients. The wavelet

which gives the reconstructed images with the highest average PSNR is chosen to be used in the general case.

Several wavelets were used in the testing. However, for simplicity only five are presented. We have chosen the

Daubechies wavelets [2] (Daub4 and Daub8) for their smoothness properties, the spline wavelets (first order and

quadradic spline) [1] because of their use in the previous works of [14,15,19], and the Haar wavelet because of its

simplicity and compact support. The results are given in Figure 7.

After the testing results given in Figure 7, the Haar wavelet is selected for image denoising:

h[n] =





1√
2
, n = 0, 1

0, else
g[n] =





−1√
2
, n = 0

1√
2
, n = 1

0, else

. (26)

Testing has shown the Haar wavelet to be the most promising in providing the highest reconstructed image quality.

The compact support of the Haar wavelet enables the wavelet coefficients to represent the least number of original
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Fig. 7. Average PSNR Values using Different Wavelets

pixels in comparison with other types of wavelets. Therefore, when a coefficient is removed because of its insignif-

icance or isolation, the result affects the smallest area of the original image in the reconstruction. That could reduce

the impact to the image quality even if a removed coefficient is not only comprised of noise.

The Haar wavelet is used in a non-decimated wavelet decomposition of the original image. Three subband levels

are used, i.e.k = −1 to 2. The proposed selective wavelet shrinkage algorithm is applied to all wavelet subbands,

and the subbands are synthesized by the non-decimated inverse wavelet transform.

Testing for the optimal values ofτ ands is accomplished by artificially adding Gaussian noise to each of the four

images, denoising all four images with a particularτ ands, and recording the average error given by Equation 24.

Then, the combination ofτ ands which gives the lowest error is the choice for that particular noise level.

The average error is recorded when denoising each of the four test images given in Figure 6 usingτ ranging from

0− 150 ands ranging from0− 20. The proposed algorithm is tested by applying AWGN with a standard deviation

(σn) of 10, 20, 30, 40, and 50 to each of the test images. The proposed method of selective wavelet shrinkage is

applied to the corrupted image, and the resulting error is recorded using Equation 24. The results of the testing in

whichσn = 30 is given in Figure 8.

Table I gives theτ ands which provide the lowest average error for each noise level tested. These particular

values are referred to asτm(·) andsm(·). Table I suggests that parametersτm(·) andsm(·) are functions of the

standard deviation of the noise,σn.

Another set of images were also tested as training samples, and the result is shown in Table II. One can see that

the optimal values ofs andτ are different from that of the first set since the images are different. In general the

traineds andτ should do well for a variety of images covered by the space which is spanned by the sample images

because the errors do not increase quickly ass andτ vary. This is shown in Figure 8 from which one can see that
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TABLE I

M INIMUM AVERAGE ERROR OF TEST IMAGES FOR VARIOUS NOISE LEVELS AND THEIR CORRESPONDING THRESHOLD AND SUPPORT

VALUES.

Noise Level(σn) 10 20 30 40 50

Min. Avg. Error 3E-4 11E-4 24E-4 42E-4 64E-4

sm value 5 9 10 15 14

τm value 23 43 63 85 108

for a relatively large range ofs andτ , the error is close to minimal.

Becauseτm(·) andsm(·) generally increase with an increase in additive noise as shown in Table I, both pa-

rameters can be modeled as functions of the additive noise,σn. Then, knowing the level of noise corruption, the

threshold levels which produce the minimum error,Error, may be obtained by estimating theτm(·) andsm(·)
functions. The five noise levels provided in the test are used as sampling points for the estimation of the continuous

functionsτm(·) andsm(·). With enough sampling points bothτm(·) andsm(·) can be effectively estimated, and

the correctτ ands can be calculated to denoise an image with any level of noise corruption, given that the noise

level is known.

The estimated functions of the sampled valuesτm(·) andsm(·) are referred to as̃τm(·) ands̃m(·), respectively.

Once the estimated functions are calculated they are used in the general case. Thus, given an image corrupted with

noise, it is denoised with no prior knowledge by estimating the level of noise corruption, calculating the proper

thresholds using thẽτm(·) ands̃m(·) functions, and using the calculated threshold levels in the denoising process

given in Section III.
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TABLE II

M INIMUM AVERAGE ERROR OF SECOND SET OF TEST IMAGES FOR VARIOUS NOISE LEVELS AND THEIR CORRESPONDING THRESHOLD

AND SUPPORT VALUES.

Noise Level(σn) 10 20 30 40 50

Min. Avg. Error 3E-4 12E-4 28E-4 48E-4 73E-4

sm value 12 16 16 17 18

τm value 15 31 49 69 82

V. ESTIMATION OF PARAMETER VALUES

It can be shown from the values given in Table I that the parametersτm(·) and sm(·) are functions ofσn;

therefore, we need to estimate the standard deviation of the noise level, and the functions. These two topics are

discussed in this section. Another idea for selecting the two parameters is to use the signal-noise-ratio (SNR) of

the image. Unfortunately, the SNR information for a noised image is not given, and very hard to derive if not

impossible for reasons mentioned earlier, i.e., one has no idea about the level of the original signal, and has to use

an entirely different way to estimate SNR of a corrupted image. On the other hand, there are standard procedures

for estimating the standard deviation of the noise level, one of which is shown below.

A. Noise Estimation

The level of noise in a given digital image is unknown and must be estimated from the noisy image data. Several

well known algorithms have been given in the literature to estimate image noise. From [4, 19] a median value of

theλ̃hh,0[·] subband is used in the estimation process. The median noise estimation method of [19] is used.

σ̃n =
Median(|λ̃hh,0[·]|)

0.6745
, (27)

whereλ̃hh,0[·] are the noisy wavelet coefficients in the high-high band of the0th scale. Because the vast majority

of useful information in the wavelet domain is confined to few and large coefficients, the median can effectively

estimate the level of noise (i.e. the average level of the useless coefficients) without being adversely influenced by

useful coefficients.

B. Parameter Estimation

Using the known level of noise added to the original images, the values ofτm(·) andsm(·), given in Table I, are

estimated. One of the simplest and most popular estimation procedures is the the LMMSE (Linear Minimum Mean

Squared Error) method, and it is used as the estimation procedure [23]. That is, two parametersaτ andbτ are found

such that

τ̃m(σn) = aτσn + bτ . (28)
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The choice ofaτ andbτ will minimize the mean squared error. Similarly, an estimate ofsm, which must be an

integer, is found as:

s̃m(σn) = basσn + bsc. (29)

The parameters which minimize the mean squared error are:aτ = 2.12, bτ = 0.80, as = 0.26, andbs = 2.81.

The LMMSE estimation procedure gives a simple description of theτm andsm functions. That is, there are only

two values needed (a andb) to be able to determine the proper thresholds for denoising. The LMMSE estimator

also is shown to be a good fit into the test data given in Figure 9. The values ofτm(·), andsm(·) are given as well

as their corresponding LMMSE estimates. The LMMSE estimate functions are the best linear fit into the data. Note

that the support valuesm must be an integer.
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Fig. 9. τm(·), sm(·) and their corresponding estimates,̃τm(·), s̃m(·).

The thresholdτ and the support values are determined by using the estimate of the noise given by Equation 27.

The two thresholds are given by

τ = aτ σ̃n + bτ

s = basσ̃n + bsc
. (30)

VI. EXPERIMENTAL RESULTS

The ”peppers” and ”house” images are used for gauging the performance of the proposed denoising algorithm.

These two images have also been used in the results of [14, 15, 19]. Therefore, the performance of the proposed

algorithms is compared with other recent algorithms given in the literature. Both the ”peppers” image and ”house”

image are corrupted with AWGN and used the proposed method for denoising. The results are given in Figures 10

and 11.

Table III gives the results of the proposed method, as well as the results of [14,15,19]. Note that the methods of

[14, 15, 19] all use the quadratic spline wavelet [1] in three subband levels, and each of the algorithms’ coefficient
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TABLE III

PSNRCOMPARISON OF THE OF THE PROPOSED METHOD TO OTHER METHODS IN THE LITERATURE(results given in dB) .

”Peppers”

Image Input PSNR 22.6 19.6 16.6 13.6 Average

Proposed Algorithm 31.00 28.98 27.17 25.46 28.15

Pizurica 3-band, [19] 30.20 28.60 27.00 25.20 27.75

Pizurica 2-band, [19] 29.90 28.20 26.60 24.90 27.40

Malfait and Roose, [14] 28.60 27.30 26.00 24.60 26.63

Mallat and Hwang, [15] 28.20 27.30 27.10 24.60 26.80

Matlab’s Sp. Adaptive Wiener 29.00 27.10 25.30 23.30 26.18

”House”

Image Input PSNR 23.9 20.9 17.9 14.9 Average

Proposed Algorithm 33.09 31.55 29.81 28.34 30.70

Pizurica 3-band, [19] 32.80 31.30 29.80 28.30 30.55

Pizurica 2-band, [19] 32.10 30.50 29.30 28.10 30.00

Malfait and Roose, [14] 32.90 31.30 29.80 28.20 30.55

Mallat and Hwang, [15] 31.30 30.50 29.10 27.10 29.50

Matlab’s Sp. Adaptive Wiener 30.30 28.60 26.70 24.90 27.63

selection method is based on a probabilistic formulation to determine the amount that a particular coefficient con-

tributes to the overall image quality. The proposed algorithm uses the Haar wavelet, given in Equation 26 in three

subband levels, and the coefficient selection process is based on a geometrical approach. As shown in Table III, the

results of the proposed method are an improvement over other methods described in the literature. In addition to

improved performance, the proposed algorithm is computationally simple to facilitate real-world applications. The

proposed algorithm has been computed on older processors for an accurate comparison, and the computation time

of the proposed method is an order of magnitude less than the previous method of highest performance, [19]. Table

IV gives the computational results of the proposed method as well as the results of [14,19].

The proposed algorithm shows a substantial drop in computation time. Both [14] and [19] used iterative compu-

tation in the selection of wavelet coefficients for reconstruction which requires unreasonable computation time for

certain applications. The current two-threshold technique is a simpler, non-iterative coefficient selection method

which produces greater performance results.

VII. C ONCLUSIONS

In this paper, a new selective wavelet shrinkage algorithm for image denoising has been described. The proposed

algorithm uses a two-threshold support criteria which investigates coefficient magnitude, spatial support, and sup-

February 17, 2004

30



19

TABLE IV

COMPUTATION TIMES FOR A 256X256 IMAGE , IN SECONDS.

Processor Pentium IV Pentium III IBM RS6000/320H

Proposed Algorithm 0.66 1.14 ***

Pizurica 3-band, [19] *** 45.00 ***

Pizurica 2-band, [19] *** 30.00 ***

Malfait and Roose, [14] *** *** 180.00

*** Computation time not evaluated

port across scales in the coefficient selection process. In general, images can be accurately represented by a few

large wavelet coefficients, and those few coefficients are spatially clustered together. The two-threshold criteria is an

efficient and effective way of using the magnitude and spatial regularity of wavelet coefficients to distinguish useful

from useless coefficients. Furthermore, the two-threshold criteria is a non-iterative solution to selective wavelet

shrinkage to provide a computationally simple solution, facilitating realtime image processing applications.

The values of the two-thresholds are determined by minimizing the error between the coefficients selected by the

two-thresholds and the coefficients selected by a denoising method which uses supplemental information provided

by an oracle. The supplemental information provided by the oracle is useful in determining the correct coefficients

to select, and the denoising performance is substantially greater than methods which do not use the supplemental

information. Thus, the method which uses the supplemental information provided by the oracle is referred to as the

optimal denoising method. Therefore, by minimizing the error between the two-threshold method and the optimal

denoising method, the two-threshold method can come as close as possible to the performance of the optimal

denoising method.

Consequently, the two-threshold method of selective wavelet shrinkage provides an image denoising algorithm

which is superior to previous image denoising methods given in the literature both in denoised image quality and

computation time. The light computational burden of the proposed denoising method makes it suitable for real-time

image processing applications.

VIII. A PPENDIX

The computation ofS·,k[x, y] is given by the following algorithm:
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~N() = {[−1,−1], [−1, 0], [−1, 1], [0,−1], [0, 1], [1,−1], [1, 0], [1, 1]}
O[·] = 0, t = 0, p = 0, ~D·,k(0) = (x, y)

if I·,k[x, y] == 1,

while ~D·,k(t) 6= NULL,

(i, j) = ~D·,k(t)

t = t + 1

for m = 0 to 7,

if ((I·,k[(i, j) + ~N(m)] == 1)

and (O[(i, j) + ~N(m)] == 0)),

p = p + 1

~D·,k(p) = ((i, j) + ~N(m))

O[(i, j) + ~N(m)] = 1,

end if

end for

end while

end if

S·,k[x, y] = t

.

O[x, y] is a binary value to determine whether a particularI·,k[x, y] value has been counted previously.~D is an

array of spatial coordinates ofvalid coefficientsthat support the current coefficientI·,k[x, y]. ~N is a set of vectors

corresponding to neighboring coefficients.
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Fig. 10. Results of the proposed image denoising algorithm. Top left; original ”peppers” image. Top right; corrupted image,σn = 37.75,

PSNR = 16.60 dB. Bottom; denoised image using the proposed method, PSNR = 27.17 dB.
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Fig. 11. Results of the proposed image denoising algorithm. Top left; original ”house” image. Top right; corrupted image,σn = 32.47, PSNR

= 17.90 dB. Bottom; denoised image using the proposed method, PSNR = 29.81 dB.
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Abstract

A combined spatial and temporal domain wavelet shrinkage algorithm for video denoising is pre-

sented in this paper. The spatial domain denoising technique is a selective wavelet shrinkage method

which uses a two-threshold criteria to exploit the geometry of the wavelet sub-bands of each video

frame, and each frame of the image sequence is spatially denoised independently of one another. The

temporal domain denoising technique is a selective wavelet shrinkage method which estimates the level

of noise corruption as well as the amount of motion in the image sequence. The amount of noise is

estimated to determine how much filtering is needed in the temporal domain, and the amount of mo-

tion is taken into consideration to determine the degree of similarity between consecutive frames. The

similarity affects how much noise removal is possible using temporal domain processing. Using motion

and noise level estimates, a video denoising technique is established which is robust to various levels of

noise corruption and various levels of motion.

Keywords—video denoising, combined spatial and temporal domain processing, selective wavelet

shrinkage, motion estimation.

I. I NTRODUCTION

The recent advance in multimedia technology has promoted a large amount of research in the area of

image and video processing. Included in many image and video processing applications which include

compression, enhancement, and target recognition are preprocessing functions for noise removal. Noise

removal is one of the most common and important processing steps in many image and video systems.

Because of the commonality of noise removal functions in most image and video systems, there has

been an large amount of research dedicated to the subject of image denoising over the past several decades,

and many different mathematical tools have been proposed. Various established denoising methods using

variable coefficient linear filters [5, 18, 22, 29], adaptive nonlinear filters [10, 17, 19, 30], DCT based

solutions [12], cluster filtering [28], genetic algorithms [27], fuzzy logic [13, 24], etc., have all been

proposed in the literature.

The wavelet transform has also been used to suppress noise in digital images. It has been shown that

the reduction in absolute value of wavelet coefficients is successful in signal restoration [16]. This process

is known as wavelet shrinkage. Other denoising techniques select or reject wavelet coefficients based on

their predicted contribution to reconstructed image quality. This process is known asselectivewavelet

shrinkage, and many works have used it as the preferred method of image denoising [1, 4, 6, 7, 9, 11, 14–

16,20,26].

However until recently, the removal of noise in video signals has not been studied seriously. Cocchia,

et. al., developed a three dimensional rational filter for noise removal in video signals [3]. The 3D
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rational filter removes noise, but also preserves important edge information. Also, the 3D rational filter

uses a motion estimation technique. Where there is no motion detected, the 3D rational filter is applied

in the temporal domain. Otherwise, only spatial domain processing is applied.

Later, Zlokolica, et. al., uses two new techniques for noise removal in image sequences [30]. Both

these new techniques show improved results upon the method of [3]. The first method is an alpha-

trimmed mean filter of [2] extended to video signals, and the second is the K nearest neighbors (KNN)

filter. Both alpha-trimmed and KNN denoising methods are based on ordering the pixel values in the

neighborhood of the location to be filtered, and averaging a portion of those spatially contiguous pixels.

Each of these methods attempts to average values which are close in value, and avoid averaging values

which are largely dissimilar in value. Thus, the image sequence is smoothed without blurring edges, or

smearing motion.

However, because the success of the wavelet transform over other mathematical tools in denoising

images, some researchers believe that wavelets may be successful in the removal of noise in video signals

as well. Pizurica, et. al., uses a wavelet-based image denoising method to remove noise from each

individual frame in an image sequence and then applies a temporal filtering process for temporal domain

noise removal [21]. The combination of wavelet image denoising and temporal filtering outperforms

both wavelet based image denoising techniques [1, 15, 16, 20] and spatial-temporal filtering techniques

[2,3,30].

The temporal domain filtering technique described in [21] is a linear IIR filter which will continue

to filter until it reaches a large temporal discontinuity. It will not filter the locations of large temporal

discontinuity where the absolute difference in neighboring pixel values is greater than a threshold,T ,

thus preserving motion while removing noise.

Although temporal processing aids in the quality of the original image denoising method, the parameter

T varies with differing video signals for improved performance. That is, proper selection ofT may be

large in sequences where there is little motion for improved noise removal, i.e., there is more redundancy

between consecutive frames. Thus the redundancy may be exploited by a largeT to improve video

quality. However, in image sequences where there exists a large amount of motion, consecutive frames

are more independent and there exists little to no redundancy to exploit. Thus, the parameterT must be

small to achieve optimal performance.

In the case of video denoising, it has been fairly well documented that the amount of noise removal

achievable from temporal domain processing, while preserving overall quality, is dependent on the amount

of motion in the original video signal [3,21]. Thus, a robust, high-quality video denoising algorithm is re-

quired to not only be scalable to differing levels of noise corruption, but also scalable to differing amounts
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of motion in the original signal. Unfortunately, this principle has not been seriously considered in video

denoising.

In this paper, we develop a noise removal algorithm for video signals. This algorithm uses selective

wavelet shrinkage in all three dimensions of the image sequence and proves to outperform the few video

denoising algorithms given in the relevant literature. First, the individual frames of the sequence are

denoised by the method of [1], which we had developed earlier. Then a new selective wavelet shrinkage

method is used for temporal domain processing.

Also, a motion estimation algorithm is developed to determine the amount of temporal domain pro-

cessing to be performed. Several motion estimators have been proposed [3, 21], but few are robust to

noise corruption. The proposed motion estimation algorithm is robust to noise corruption and an im-

provement over the motion estimation method of [3]. The proposed denoising algorithm, including the

proposed motion estimation method, is experimentally determined to be an improvement over the meth-

ods of [3,21,30].

Following the Introduction, Section II gives a brief description of the image denoising method of [1],

used as the spatial denoising method in the proposed video denoising algorithm. Section III describes the

temporal domain wavelet shrinkage method and explores the proper order of temporal and spatial domain

processing functions. Section IV provides the proposed motion estimation index used in the temporal

domain processing and compares it with the motion estimation method of [3]. Section V develops the

parameters for temporal domain processing, and Section VI gives the experimental results of the proposed

method as well as other established methods. Section VII concludes the paper.

II. SPATIAL DOMAIN DENOISING TECHNIQUE

The proposed video denoising technique uses the selective wavelet shrinkage algorithm of [1] for

denoising of the individual frames of the image sequence. A brief review of the algorithm is included in

this section for completeness.

A. The Coefficient Selection Method

First, we will review the proposed coefficient selection method of [1]. The coefficient selection method

is based on a two-threshold criteria, selecting wavelet coefficients with large magnitude and spatial regu-

larity.

Assume that an image signal is corrupted with additive noise, i.e.,

f̃(l) = f(l) + η(l), (1)
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wheref(l) is the noiseless image pixel of positionl, η(l) is a random noise function, and̃f(l) is the

corresponding corrupted signal.

The wavelet shrinkage algorithm takes the non-decimated 2D wavelet transform off̂(l), and selects

the wavelet coefficients for denoising. The first step for selecting the wavelet coefficient is to find a

binary label for each coefficient which collectively forms a binary map. The binary map is then used to

determine whether or not a particular wavelet coefficient is included in a regular spatial feature. The non-

decimated, 2D wavelet transform of̃f(l) generates coefficients,λ̃m,k[l] of spatial locationl, resolutionk,

and subbandm ∈ {lh, hl, hh}. The subband designationm denotes the low-high (lh), high-low (hl), and

high-high (hh) subbands. For example, thelh subband is produced by convolving the input function with

the low-pass scaling filter,h[·], in the horizontal dimension then convolving the result with the high-pass

wavelet filter,g[·], in the vertical dimension.̃λm,k[l] is used to create the preliminary binary label,Im,k[l].

Im,k[l] =





1, when |λ̃m,k[l]| > τ

0, else
, (2)

whereτ is a threshold for selectingvalid coefficientsin the construction of the binary coefficient map. A

valid coefficientis defined as a coefficient,̃λm,k[l], which results inIm,k[l] = 1; hence the coefficient has

been selected due to its magnitude. After coefficients are selected by magnitude, spatial regularity is used

to further examine the role of thevalid coefficient: whether it is isolated noise or part of a spatial feature.

The number of supporting binary values around a particular non-zero valueIm,k[l] is used to make the

judgement. The support value,Sm,k[l], is the sum of allIm,k[l] which support the current binary value

Im,k[l]; that is, the total number of allvalid coefficientswhich are spatially connected toIm,k[l].

A coefficient is spatially connected to another if there exists a continuous path ofvalid coefficients

between the two. Figure 1 gives a generic coefficient map. Thevalid coefficientsare highlighted in gray.

From Figure 1 it can be shown that coefficients A, B, C, and H do not support any othervalid coefficients

in the coefficient map. However, coefficients D and F support each other, coefficients E and G support

each other, and N and O support each other. Also, coefficients I, J, K, L, M, P, Q, and R all support one

another. Figure 2 gives the value ofSm,k[l] for each of thevalid coefficientsgiven in Figure 1. A method

of computingSm,k[l] is given in [1].Sm,k[l] is used to refine the original binary mapIm,k[l] by

J·,k[x, y] =





1, when S·,k[x, y] > s,

or J·,k+1[x, y]I·,k[x, y] = 1

0, else

, (3)

whereJm,k[l] is the refined coefficient map, ands is the necessary number of support coefficients for

selection.J·,·[·] is calculated recursively, starting from the highest multiresolution level, and progressing
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Fig. 1. Generic coefficient array

Fig. 2. Generic coefficient array, with correspondingS·,k values

downward.

Equation 3 is equal to one when there exists enough wavelet coefficients of large magnitude around

the current coefficient. However, it also retains coefficients in which the magnitude of the coefficient is

effectively large (Im,k[l] = 1) but not locally supported (Jm,k[l] = 0) only if the coefficient of the larger

scale is large and locally supported (Jm,k+1 [l] = 1). The decision to use this criterion is in the somewhat

rare case when a useful coefficient is not locally supported. In the general case, wavelet coefficients of

images are clustered together, but rarely they are isolated. In [16], wavelet coefficients are modifiedonly

by their evolution across scales. Regular signal features contain wavelet coefficients which increase with

increasing scale. Thus, if there exists a useful coefficient which is isolated in an image, it is reasonable

that a coefficient in the same spatial location of an increase in scale will be sufficiently large and spatially

supported. Thus, the coefficient selection method provided by Equation 3 selects coefficients which are

sufficiently large and locally supported as well as isolated coefficients which are sufficiently large and
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supported by scale.

This type of scale-selection is consistent with the findings of Said and Pearlman [23], who developed an

image codec based on a ”spatial self-symmetry” between differing scales in wavelet transformed images.

They discovered that most of an images energy is concentrated in the low-frequency subbands of the

wavelet transform. And because of the self-symmetry properties of wavelet transformed images, if a

coefficient value is insignificant (i.e., of small value or zero), then it can be assumed that the coefficients

of higher spatial frequency and same spatial location will be insignificant. In our application, however, we

are looking for significance rather than insignificance, so we look to the significance of lower frequency

coefficients to determine significance of the current coefficient. In this way, the preliminary binary map

is refined by both spatial and scalar support, given by Equation 3.

The final coefficients retained for reconstruction are given by

L·,k[x, y] =





λ̃·,k[x, y], when J·,k[x, y] = 1

0, else
. (4)

The denoised image is reconstructed by synthesizing the supported wavelet coefficients,Lm,k[l] using

the non-decimated inverse wavelet transform.

In general, natural and synthetic imagery can be compactly represented in few wavelet coefficients of

large magnitude. These coefficients are in general spatially clustered. Thus, it is useful to obtain selection

methods based on magnitude and spatial regularity to distinguish between useful coefficients which are

representative of the image and useless coefficients representative of noise. The two-threshold criteria

for the rejection of noisy wavelet coefficients is a computationally simple test for magnitude and spatial

regularity which can effectively distinguish between useful and useless coefficients.

B. Determining theτ ands Thresholds

In determining the optimal threshold values, it is found that both thresholds are a function of the noise

standard deviation,σn [1]. Therefore,

τ = aτ σ̃n + bτ (5)

and

s = basσ̃n + bsc, (6)

whereσ̃n is an estimate of the noise,aτ = 2.12, bτ = 0.80, as = 0.26 andbs = 2.81. The estimate of

the noise is taken from that of [20] and is given by

σ̃n =
Median(|λ̃hh,0[·]|)

0.6745
, (7)
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whereλ̃hh,0[·] are the noisy wavelet coefficients of the0th level andhh subband. For a more detailed

treatment of the proposed spatial denoising method, refer to [1].

III. T EMPORAL DENOISING AND ORDER OFOPERATIONS

In this section, we develop the principal algorithm for video denoising. Additional mechanisms re-

quired by this algorithm will be discussed in latter sections.

A. Temporal Domain Denoising

Let us definefz
l as a pixel of spatial locationl and framez in a given image sequence. The non-

decimated wavelet transform applied in the temporal domain is given by

λ3D
k+1[l, z] =

∑
p

g[p]α3D
k [l, 2k+1p− z], (8)

and

α3D
k+1[l, z] =

∑
p

h[p]α3D
k [l, 2k+1p− z], (9)

where

α3D
−1 [l, z] = fz

l . (10)

λ3D
k [l, z] is the high-frequency wavelet coefficient of spatial locationl, frame z and scalek. Also,

α3D
k [l, z] is the low-frequency scaling coefficient of spatial locationl, framez and scalek. Thus, multiple

resolutions of wavelet coefficients may be generated from iterative calculation of Equations 8 and 9.

The wavelet function used in the temporal domain denoising process is the Haar wavelet given by

h[n] =





1√
2
, n = 0, 1

0, else
g[n] =





−1√
2
, n = 0

1√
2
, n = 1.

0, else

(11)

The decision to use the Haar wavelet is based on experimentation with several other wavelet functions and

finding the greatest results with the Haar. The compact support of the Haar wavelet makes it a suitable

function for denoising applications. Because of it’s compact support, the Haar coefficients represent least

number of original pixels in comparison to other types of wavelets. Thus, when a coefficient is removed

because of its insignificance, the result affects the smallest area of the original signal in the reconstruction.

Significant wavelet coefficients are selected by their magnitude with a threshold operation.

L3D
k [l, z] =





λ3D
k [l, z], when |λ3D

k [l, z]| > τz[l],

0, else
, (12)
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whereL3D
k [l, z] are the thresholded wavelet coefficients used in signal reconstruction, andτz[·] is the

threshold value. The resulting denoised video signal is computed via the inverse non-decimated wavelet

transform

α̂3D
k [l, z] = 1

2

∑
p h[p]α̂3D

k+1[l, z − 2k+1p]

+1
2

∑
p g[p]L3D

k+1[l, z − 2k+1p]
, (13)

which leads to

f̂z,3D
l = α̂3D

−1 [l, z]. (14)

f̂z,3D
l is the temporally denoised video signal.

B. Order of operations

With a spatial denoising technique and a temporal denoising technique established in Sections II and

above, respectively, there still remains the question of the order of operations. The highest quality may

occur with temporal domain denoising followed by spatial domain (TFS) denoising, or spatial denoising

followed by temporal (SFT) denoising.

Theoretically, is it not possible to prove and determine which operation is better because the description

of the noise is not known. However, it is our hypothesis that SFT denoising can more aptly determine

noise from signal information. The reasoning behind this hypothesis is that removing noise in the spatial

domain is a well known process, and any noise removal prior to temporal domain processing is helpful

in discriminating between the residual noise and motion in the image sequence. However, a validation of

this hypothesis is determined heuristically.

Thus, a simple test is conducted with two test video signals. The first video signal is one which

contains little motion, and the other contains a great deal of motion. The selected image sequences are

the ”CLAIRE” sequence from frame #104-167 and the ”FOOTBALL” sequence from frame #33-96.

Both of the image sequences are denoised withτ andτz ranging from0 − 30 for both TFS and SFT

denoising operations. Note that in the test,τz is a single value and spatially independent, unlike the

temporal threshold used in the final denoising algorithmsτz[·] which is dependent upon spatial position.

Also, thes parameter for feature selection in the image denoising method described in Section II is

calculated by taking Equations 5 and 6 and solving for s. The parameters is given by:

s =
⌊

as

aτ
(τ − bτ ) + bs

⌋
. (15)

Also, the number of resolutions of the non-decimated wavelet transform used in both the spatial and

temporal denoising methods isk = 1...5. The average PSNR of each trial is recorded. The PSNR of an

image is given by:

PSNRz = 20log10

(
255√
msez

)
, (16)
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where

msez =
1
L

∑

l

(
f̂z

l − fz
l

)2
. (17)

L is the size of the image,̂fz
l is the denoised pixel of spatial locationl and framez, andfz

l is the

corresponding pixel of the original signal.

Figure 3 gives the results of testing. As shown in Figure 3, the highest average PSNR is achieved
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Fig. 3. Test results of both TFS and SFT denoising methods. Upper left: FOOTBALL image sequence, SFT denoising, max.

PSNR = 30.85,τ = 18, τz = 12. Upper right: FOOTBALL image sequence, TFS denoising, max. PSNR = 30.71,τ = 18,

τz = 12. Lower left: CLAIRE image sequence, SFT denoising, max. PSNR = 40.77,τ = 19, τz = 15. Lower right: CLAIRE

image sequence, TFS denoising, max. PSNR = 40.69,τ = 15, τz = 21.

by SFT denoising; first spatially denoising each frame of the sequence followed by temporal domain

denoising. Thus, for the proposed denoising method, spatial domain denoising occurs prior to temporal

domain denoising, exclusively.

In addition to a higher average PSNR, there is another benefit to SFT denoising. The level of motion

in an image sequence is known to be crucial in determining the amount of noise reduction possible from
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temporal domain processing, and a motion index calculation is inevitably done by comparing consecutive

frames to one another. Thus, let us define a noisy image sequence wheref̂z
l is a corrupted pixel in spatial

positionl and framez and is defined by

f̂z
l = fz

l + ηz
l , (18)

wherefz
l is the noiseless pixel value, andηz

l is the noise function. We can compare consecutive frames

by taking the difference as in [3,21] to find

f̂z
l − f̂z+1

l = ∆fz
l + ∆ηz

l . (19)

Thus by taking the difference between frames to find the level of motion, the noise function is subtracted

from itself, in effect doubling the amount of noise corruption [25]. Therefore, by applying spatial de-

noising prior to motion index calculation we can reduce the value of∆ηz
l and provide a more precise

calculation of the motion given in the image sequence.

IV. PROPOSEDMOTION INDEX

A motion index is important in the success of a video denoising method in order to discriminate be-

tween large temporal variances in the video signal which are caused by noise and large temporal variances

which are caused my motion in the original (noiseless) signal. A motion index is able to aid temporal

denoising algorithms to eliminate the large temporal variances caused by noise while preserving the tem-

poral variances caused by motion in the original image sequence, creating a higher quality video signal.

That is, the motion index is used to determineτz[·].

A. Motion Index Calculation

Several works have developed a motion estimation index to determine the amount of temporal domain

processing to perform, i.e., the amount of information that can be removed from the original signal to im-

prove the overall quality [3,21]. However, none of these proposed indices are robust to noise corruption,

which is an important feature in a motion index. There are a few characteristics that a motion index must

possess. One, a motion index should be a localized value. The reasoning behind a localized motion index

is because the amount of motion may vary in different spatial portions of an image sequence. Thus the

motion index should be able to identify those differences. Two, a motion index needs to be unaffected

by the amount of noise corruption in a given video signal. A motion index should be robust to noise

corruption to aptly determine the proper amount of temporal domain processing.

Thus, a localized motion index is developed which is relatively unaffected by the level of noise corrup-

tion in the original image sequence. A spatially averaged temporal standard deviation (SATSD) is used as
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the index of motion. Spatial averaging is used to remove the noise inherent in the signal, and the temporal

standard deviation is used to detect the amount of activity in the temporal domain.

Let us definef̂z,2D
l as pixel value in the spatial locationl of thezth frame of an image sequence already

processed by the 2D denoising method of [1]. The spatial averaging of the spatially denoised signal is

given by

Az
l =

1
B2

∑

i∈I

f̂z,2D
i , (20)

whereI is the set of spatial locations which form a square area centered around spatial locationl, and

B2 is the number of spatial locations contained inI; typically, B = 15. The value ofB must be an odd

value to allow for the square area to set centrally around spatial locationl. This average is used to find

the standard deviation in the temporal domain.

µl =
1
F

F∑

i=1

Ai
l, (21)

and

Ml =

√√√√ 1
F

F∑

i=1

(Ai
l − µl)2. (22)

Ml is the localized motion index,F is the number of frames in the image sequence, andµl is the temporal

mean of the spatial average at locationl.

B. Motion Index Testing

The FOOTBALL and CLAIRE image sequences are used once more to test the proposed motion index

as well as the motion index given in [3], and two specific spatial locations are selected from each sequence:

a location where there is little to no motion present, and a location where motion is present. A frame from

each of the two image sequences is given in Figure 4, and the four spatial locations for evaluation of the

proposed motion index are highlighted.

The two sequences are corrupted with various levels of noise, and the motion is estimated at each of

the four spatial locations selected with both the proposed motion index and that of [3]. The results of

the motion index used in [3] is given in Figure 5. As shown in Figure 5, the motion index of [3] is not

robust to noise corruption. That is, the motion calculation from the same spatial location increases with

an increase in noise. Also, the motion index shows the FOOTBALL image sequence (x = 300, y = 220)

as having a higher motion index than the CLAIRE image sequence (x = 40, y = 200) with zero noise

corruption. However, the motion index shows the opposite results with higher levels of noise. Thus, the

motion index gives conflicting results with the introduction of noise.

The results of the proposed SATSD motion index are given in Figure 6. As shown in Figure 6, the
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Fig. 4. Spatial positions of motion estimation test points. Left: FOOTBALL image sequence, frame #96. Right: CLAIRE

image sequence, frame #167
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Fig. 5. Motion estimate given in [3] of image sequences, CLAIRE and FOOTBALL.

proposed motion index is much more robust to varying noise levels, and the order of locations from

highest to lowest motion is what one would believe is correct. The location with the lowest motion index

is in the CLAIRE image sequence where there is no camera motion, and there are no moving objects

in that spatial location. The next lowest motion location is in the FOOTBALL image sequence in the

spatial location where there are no moving objects. However, there is some slight camera motion in the

sequence, so the motion index is slightly higher than in the CLAIRE image sequence. The location with

the next highest motion index is the center of the CLAIRE image sequence, where there is some motion

due to movement of the head, and the location with the highest motion index is the FOOTBALL image
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Fig. 6. Proposed motion estimate of image sequences, CLAIRE and FOOTBALL.

sequence in the spatial location where many objects cross.

V. TEMPORAL DOMAIN PARAMETER SELECTION

The amount of temporal denoising which is beneficial to an image sequence is dependent upon the

amount of noise corruption as well as the amount of motion. Thus, the thresholdτz[l] is given by

τz[l] = ασ̃n + βMl (23)

whereMl is the motion index of spatial positionl, andσ̃n is the estimated noise standard deviation of the

image sequence. The two parametersα andβ are determined experimentally using test image sequences.

In the proposed coefficient selection method, we use atraining sampleapproach. The approach starts

with a series of test image sequences serving as training samples to derive the functions which determine

the optimal set of the values forα andβ. Theoretically, we may represent each training sample as a vector

Vi, i = 1, n. Those training samples should span a space which covers more corrupted image sequences

than the training samples:

S = Span{Vi; i = 1, ..n}. (24)

The original data and the statistical distribution of the noise are given for each of the training samples

which are corrupted. The optimal set of parameters can then be determined for the training samples using

the approach described earlier. Ideally, the space spanned by the training samples contains the type of the

corrupted image sequences which are to be denoised. As a result, the same set can generate an optimal

or close to optimal performance for the corrupted image sequences of same type. It is clear that more
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training samples will generate parameters suitable for more types of image sequences, while a space of

fewer training samples is suitable for fewer types of image sequences.

In order to obtain an estimate of the noise level,σ̃n, an average is taken from the noise estimates of

each frame in the image sequence, given by Equation 7. It is reasonable to assume an IID (Independent,

Identically Distributed) model for the level of noise for each pixel position since noise in each pixel posi-

tion is generated by individual sensing units of the image sensor such as CCD [8] which are independent.

As a result, the estimate of the standard deviation of the noise (σn) in each image also represents the

standard deviation of the noise in the temporal domain. Therefore, we can use the estimate of the noise

in the spatial domain to estimate that in the temporal domain.

It should be pointed out that after the denoising has occurred in the spatial domain using the SFT

method, the standard deviation of the noise is significantly reduced. That reduction is statistically equal

to each frame. As a result, the estimated noise in the spatial domain can still be nominally used for noise

reduction in the temporal domain as the reduction ofσn can be automatically absorbed byα.

The sequences CLAIRE, FOOTBALL, and TREVOR are used forα andβ selection. Each of the

image sequences are corrupted with differing levels of noise corruption (σn = 10, 20) and denoised with

the SFT denoising method where Equation 23 is used as the temporal domain threshold. Values ofα

andβ are used ranging fromα = 0 to 3.0 andβ = −0.3 to 0.3. The results of this testing is given in

Figure 7. As shown in Figure 7 the maximum average PSNR is achieved whenα = 0.9 andβ = −0.11.
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Fig. 7. α andβ parameter testing for temporal domain denoising.

The result is reasonable, of course, because as the motion increases in an image sequence the redundancy

between frames decreases, and the benefits of temporal domain processing decrease. Thus, as the testing

has shown, the temporal domain threshold decreases as the motion increases.
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VI. EXPERIMENTAL RESULTS

The proposed video denoising algorithm first is applied to each of the video frames individually and

independently. The method of [1] was developed earlier by our previous research to denoise images, and

is used as the spatial denoising portion of the wavelet-based video denoising algorithms.

The video signal is then denoised in the temporal domain by the method developed in Sections III and

V. The temporal denoising algorithm is a selective shrinkage algorithm which uses a proposed motion

estimation index to determine the temporal threshold,τz[·]. The temporal threshold is modified by the

motion index to effectively eliminate temporal domain noise while preserving important motion informa-

tion.

Three image sequences are used to determine the effectiveness of the proposed video denoising method.

They are the SALESMAN image sequence, the TENNIS image sequence, and the FLOWER image se-

quence. These three sequences are all corrupted with various levels of noise and denoised with the

methods of [1, 3, 21, 30] as well as the proposed method. Please note that only the temporal domain

denoising algorithm of [21] is being tested. The spatial domain denoising methods of [1] is used for all

the wavelet-based video denoising methods. The results are given in Figures 8 through 13. As shown
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Fig. 8. Denoising methods applied to the SALESMAN image sequence, std. = 10

in Figures 8 through 13, the proposed method consistently outperforms the other methods presented. In

all cases, the proposed denoising method has a higher average PSNR then all other denoising methods

tested. Also, note that in the method of [21], the thresholdT changes due to video content and noise level

to obtain the highest average PSNR using that particular method. In the proposed method, the temporal

domain threshold is automatically calculated due to estimates of the noise level and motion.

Figures 14 through 19 give an example of the effectiveness of each of the denoising methods. Figure 14
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Fig. 9. Denoising methods applied to the SALESMAN image sequence, std. = 20
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Fig. 10. Denoising methods applied to the TENNIS image sequence, std. = 10

gives the original frame #7 of the SALESMAN image sequence, and Figure 15 gives frame #7 corrupted

with noise. Frames 16 through 19 give frame #7 denoised by each of the methods mentioned in the

section.

VII. C ONCLUSIONS

In this paper, a new combined spatial and temporal domain wavelet shrinkage method is developed

for the removal of noise in video signals. The proposed method uses a geometrical approach to spatial

domain denoising to preserve edge information, and a newly developed motion estimation index for

selective wavelet shrinkage in the temporal domain.
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Fig. 11. Denoising methods applied to the TENNIS image sequence, std. = 20
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Fig. 12. Denoising methods applied to the FLOWER image sequence, std. = 10

The spatial denoising technique is a selective wavelet shrinkage algorithm developed in [1] and is

shown to outperform other wavelet shrinkage denoising algorithms given in the literature both in denoised

image quality and computation time.

The temporal denoising algorithm is also a selective wavelet shrinkage algorithm which uses a motion

estimation index to determine the level of thresholding in the temporal domain.

The proposed motion index is experimentally determined to be more robust to noise corruption than

other methods, and is able to help determine the threshold value for selective wavelet shrinkage in the

temporal domain. With the motion index and temporal domain wavelet shrinkage, the proposed video

denoising method is experimentally proven to outperform other methods given in the literature for various
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Fig. 13. Denoising methods applied to the FLOWER image sequence, std. = 20

Fig. 14. Original frame #7 of the SALESMAN image sequence

levels of noise corruption applied to video signals with varying amounts of motion.
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Fig. 15. SALESMAN image sequence corrupted, std. = 20, PSNR = 22.10

Fig. 16. Results of the 3D K-nearest neighbors filter, [30], PSNR = 28.42
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Abstract— This paper presents a novel feature selection method
which is named Filtered and Supported Sequential Forward
Search (FSSFS) in the context of Support Vector Machines
(SVM). In comparison with conventional wrapper methods em-
ploying the sequential forward search (SFS) strategy, it has two
important features that reduce the computation time of SVM
training during the feature selection process. First, in stead of
utilizing all the training samples to obtain the classifier, FSSFS,
by taking advantage of the existence of support vectors in SVM,
dynamically maintains an active data set for each SVM to be
trained on. In this way the computational demand of a single
SVM training decreases. Secondly, a new criterion, in which
discriminant ability of individual features and the correlation
between them are both taken into consideration, is proposed
to effectively filter out non-essential features before every SFS
iteration begins. As a result, the total number of training is
significantly reduced. The proposed approach is tested on both
synthetic and real data to demonstrate its effectiveness and
efficiency.
Index Terms— feature selection, sequential forward search (SFS),
support vector machines (SVM), FSSFS.

I. I NTRODUCTION

Feature dimensionality reduction is of considerable im-
portance for two primary reasons: reduce the computational
complexity and improve the classifier’s generalization ability.
Feature selection addresses the dimensionality reduction prob-
lem by determining which subset of those features are most
essential for classification. Based on the criterion for subset
evaluation, feature selection approaches can be grouped into
two categories: filter methods and wrapper methods [1]. Ac-
quiring no feed back from classifiers, filter methods estimate
the classification performance by some indirect assessment
such as distance measures. Wrapper methods, on the contrary,
are classifier-dependent. They evaluate the “goodness” of the
selected feature subset directly based on the classification
accuracy, which would intuitively yield better performance. As
a matter of fact, experimental results are in general reported
in favor of the wrapper methods [1] [2] even though more
computational cost is needed.

As a state-of-art classifier, Support Vector Machines (SVM)
has been successfully applied in a variety of areas [3]–[5].
However, given the fact that training just a single SVM would
impose a lot of computation when the number of training
samples is large, the integration of SVM and wrapper methods,
which calls for multiple times of SVM training process, might

be computationally infeasible. In this paper we present a
expedited wrapper method for SVM which is named Filtered
and Supported Sequential Forward Search (FSSFS). As its
name suggests, this new wrapper feature selection method
employs sequential forward search strategy (SFS), but it has
the following advantages over the conventional wrapper/SFS
method:

1) FS SFS combines the advantages of filter and wrapper
methods by introducing a filtering process for each SFS
iteration;

2) FS SFS introduces a new criterion that is computation-
ally simple and considers both discriminant ability of
individual features and the correlation between them;

3) FS SFS improves the efficiency of obtaining a single
SVM classifier by dynamically maintaining an small
active training set.

The rest of the paper is organized as follows. Section II
gives a brief introduction of SVM and Section III explains
FS SFS in detail. Experimental results are given in section IV
followed by conclusions and discussions in section V.

II. SUPPORTVECTORMACHINES

SVM is a state-of-art learning machine based on thestruc-
tural risk minimizationinduction principle. Here we only give
a very brief review while the detailed description can be found
in [6]. ConsiderN training sample pairs

{X(1), Y (1)}, {X(2), Y (2)}, . . . , {X(N), Y (N)},
whereX(i) is a k-dimensional feature vector representing the
ith training sample, andY (i) ∈ {−1, 1} is the class label of
X(i).

A hyperplane in the feature space can be described as
the equationW · X + b = 0, where W ∈ Rk and b is
a scalar. When the training samples are linearly separable,
SVM yields the optimal hyperplane that separates two classes
with no training error and maximizes the minimum distance
from a pointX(i) to the hyperplane by solving the following
optimization problem:

Minimize : f(W ) = 1
2 ‖W‖2

Subject to: Y (i)
(
W ·X(i) + b

) ≥ 1, i = 1, ..., N. (1)

For linearly nonseparable cases, there is no such a hyperplane
that is able to classify every training point correctly. However
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Fig. 1. The outline of the proposed method for feature selection for SVM.

the previous idea can be generalized by introducing the
concept ofsoft margin. Thus the new optimization problem
becomes

Minimize : f(W, ξ) = 1
2 ‖W‖2 + C

∑N
i=1 ξ(i)

Subject to: Y (i)
(
W ·X(i) + b

) ≥ 1− ξ(i), i = 1, . . . N,(2)

whereξ(i), is called a slack variable and related to the soft
margin. Both optimization problems (1) and (2) can be solved
by introducing the Lagrange multipliersα(i) that reduces them
to quadratic programming problems.

In the classification phase, a point̃X in the feature space
is assigned a label̃Y according to the following equation:

Ỹ = sgn
[
W · X̃ + b

]

= sgn[
∑N

i=1 α(i)Y (i)
(
X(i) · X̃)

+ b]. (3)

III. FS SFS: FILTERED AND SUPPORTED

SEQUENTIAL FORWARD SEARCH

A. Algorithm Review of FSSFS

The outline of the proposed method is shown in Fig. 1. The
filtering part in our approach, acting in the generic way similar
to a filter method, ranks features without involving the clas-
sifier. The features with relatively high ranks are considered
as “informative” feature candidates and then re-studied by the
wrapper part that further investigates their contributions to a
specific classifier. This combinational framework delivers as
good performance as the conventional wrapper method but is
computationally simpler.

Now with the framework determined, the feature selection
problem is reduced to a search problem to find the optimal sub-
set [7]. Many search strategies have been proposed [8]–[10],
and we adopt a suboptimal search method called sequential
forward search (SFS) [10] algorithm for its simplicity and
effectiveness proven in many applications. In the following
three subsections, we will explain how FSSFS works in detail.

B. F SFS: FilteredSFS Using a New Criterion

Evidently an effective filtering criterion is needed since it is
undesirable if many informative features are discarded by the
filtering process. Also the criterion should be simple to avoid
excessive computational cost. To address this problem, we
propose the following new filtering criterion, which considers
both the discriminant ability of individual features as well as
the correlation between them. Also it is simple to calculate.

Suppose we have obtained a feature combinationFs =
{fn1 , fn2 , . . . , fsd

} and need to add one more feature. Then
the score for a featurefi is computed as follows.

1) discriminant ability of individual features
The discriminant ability of featurefi is described by

Di =
|mi

1 −mi
2|

stdi
1 + stdi

2

, (4)

where mi
1 and stdi

1 (mi
2 and stdi

2) are the mean and
standard deviation of the samples belonging to class 1
(-1) when only featurefi is considered.

2) correlation between features
First we define the correlation coefficientρi,j between
two features, sayfi andfj .

ρi,j =
2∏

c=1

ρ
(c)
i,j =

2∏
c=1

cov
(
Sc(fi), Sc(fj)

)
√

var
(
Sc(fi)

)
· var

(
Sc(fi)

) (5)

whereSc(fi) = {xfi
(l)|Y (l) = c} is the vectors that

represented by featurefi and labeled as classc.
Then based onρi,j , we define the correlation coefficient
betweenfi andFs as

ρi,Fd
= max

fj∈Fd

ρi,j . (6)

It is desirable to select the features that can individually
separate the classes well but has small correlation with the
feature set that has been obtained. Thus the final score assigned
to fi is defined as:

Ri,Fs = |ρi,Fs | −
Di

max{Dl} , (7)

whereDi is normalized such that it is in the same range as
|ρi,Fs

|.
C. SSFS: SupportedSFS in the Context of SVM

In SVM there is an special group of training samples named
“support vectors”, whose corresponding coefficientsα(i) in
Eq. (3) are non-zeros. In other words, samples other than
support vectors have no contribution to determining the deci-
sion boundary. Since usually the number of support vectors is
relatively small, we could train SVM just by using the support
vectors. Following this idea, we propose the supported SFS
algorithm, which dynamically maintains anactive training
set as estimated candidates of the support vectors, and trains
SVM using this reduced subset rather than the whole original
training set. In this way, we are able to find the boundary with
less computational cost.

The procedure of SSFS is described as follows. The first
step is to select the best single feature. To do so, we train SVM
k times, each of which uses all the training pairs available but
only considers the individual featurefi. Mathematically the
initial feature combination set isF i

1 = fi, fi ∈ F, and the
active training set isV i

1 = {1, 2, . . . , N}.
Although in this step every training pair inS is evolved in

this initial training task, the computational complexity is not
high because the input vector is just one-dimensional. After
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the training, each single-feature combinationF i
1 is associated

with a margin valueM i
1 and a group of support vectorsvi.

The feature that yields the smallest margin

j = arg min
i∈{1,2,...,N}

M i
1 (8)

is then chosen as the best single feature. Thus we obtain the
initial feature combinationF1 = {fj} and its active training
setV1 = {vj} for the next step.

At stepn, we have already obtained the feature combination
Fn that containsn features, and the active training setVn.
To choose one more feature into the feature combination set,
we add each remaining featurefi one by one and construct
the corresponding active training set for every new feature
combination as follows:{

F i
n+1 = Fn ∪ {fi}, for fi ∈ F av

n ,
V i

n+1 = Vn ∪ {vi}. (9)

whereF av
n = {fr | fr ∈ F andfr 6∈ Fn} is the collection of

the available features to be selected from.
For eachF i

n+1 we train SVM using the samples inV i
n+1.

The resulting margin and the collection of the support vectors
are denoted asM i

n+1 and SV i
n+1, respectively. Then the

featurefj that yields the combination with the least margin as

j = arg min
fi∈F av

n

M i
n+1 (10)

is selected, and accordingly the new feature combinationFn+1

and new active training setVn+1 are obtained as follows:
{

Fn+1 = F j
n+1,

Vn+1 = SV j
n+1.

(11)

The SFS process continues until no significant margin reduc-
tion is found or the desired number of features is obtained.

D. FS SFS: the Integration of FSFS and SSFS

The integration of FSFS and SSFS is quite straightforward
for which the basic idea is discarding the features with high
scores that is computed according to Eq. (7) to reduce the
number of features SSFS has to evaluate. Again suppose we
are at stepn of SFS withFn and Vn available, and FSSFS
works as follows:

1) calculate the scoreRi,Fn
for each remaining featurefi;

2) selectKn lowest scored features to constructF av
n ;

3) determine the next feature to be added using Eq. (9) and
Eq. (10);

4) update the active training set using Eq. (11).
Kn here is the tuning parameter to balance between the

performance and the algorithm complexity. In our experiments,
Kn is set tob |Fn|

2 c such that half of the available features are
discarded at every SFS iteration step.

IV. EXPERIMENTAL RESULTS

In the experiments, the proposed feature selection method
is applied to both synthetic and real-world data sets. For all
the experiments, the SVM optimization is achieved by using
SVMTorch [11].

A. Results on Synthetic Data

Three series of experiments are carried out on the synthetic
data sets, and for each experiment we sampleN vectorsX =
(x1, x2, . . . , xk) from two classes (class 1 or class -1) in ak-
dimensional data space. The componentsxi are independent
Gaussian variables whose distributions are designed as:

p(xi) =

{
1√

2πσi
exp(xi−1

2σ2
i

), if X belongs to class 1;
1√

2πσi
exp(xi+1

2σ2
i

), if X belongs to class -1,
(12)

whereσi = 0.5 · 2(i−1) and i = 1, 2, . . . , k.
The first experiment is a 2-D case wherek = 2 and N =

100. Fig. 2 shows how the active training set changes when
features are added one by one into the candidate feature set
F . FS SFS is also tested in a 3-D case wherek = 3 and
N = 100. In both 2-D and 3-D scenarios, we observe that
with our experiment setting FSSFS and the conventional SVS
methods generate exactly the same support vectors .

In the third experiment, we test FSSFS in a 10-dimensional
case wherek = 10 and N = 250. According to Eq. (12), if
i < j the variance of featurexi is larger than that ofxj , and
thereforexi has more discriminant ability. For that reason, we
expectxi to be selected beforexj . For display purpose, we
assign a featurexi a score as11− pos(xi), where pos(xi) is
the order ofxi selected. For example, ifxi is the number one
selected feature component, its score would be 10. Fig. 3(a)
gives the ideal score ofxi. Fig. 3(b) and Fig. 3(c) show the
scores of features, which are averaged over 100 trials, when
SFS and FSSFS are applied, respectively. As one can see,
FS SFS is able to achieve similar results of SFS with lower
computational cost.

B. Results on Real-World Data

The proposed algorithm is applied to four real-world data
sets obtained from the widely-used UCI (University of Cali-
fornia, Irvine) repository of machine learning [12]. These data
sets are:

1) the BUPA Liver Disorders data set (BUPA Liver) which
contains 354 instances with 6 features;

2) the Wisconsin Breast Cancer data set (BCW) which
contains 683 instances with 9 feature;

3) the data of letter ’A’ and ’B’ from Letter Image Recogni-
tion data set (A-B-letter) which contains 1555 instances
with 16 feature;

4) the Johns Hopkins University Ionosphere data set (Iono-
sphere) which contains 351 instances with 34 feature.

For each data set we randomly set aside 20% instances as
the testing samples, and the rest as the training samples. The
results are listed in Table I. As one can see, FSSFS improves
the efficiency of SFS without sacrificing the accuracy of either
the selection or the classification.

V. CONCLUSIONS

In this paper, we present a novel feature selection method
for SVM. By introducing a feature pruning process, we filter
out “uninformative” features to reduce the required number of
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Fig. 3. The score of feature components. (a) The ideal scores. (b) The scores obtained by using SFS. (b) The scores obtained by using FSSFS.

TABLE I

COMPARISON OFCLASSIFICATION ACCURACY AND RUN TIME BETWEEN FS SFSAND SFSOVER 10 TRIALS.

number of features classification accuracy (%) Run Time (seconds)
training testing

available selected FS SFS SFS FS SFS SFS FS SFS SFS FS SFS/SFS

BUPA Liver 6 4.6 78.7% 78.5% 70.2% 70.7% 4.31 6.08 71%
BCW 9 5.5 97.4% 97.4% 96.3% 95.4% 10.61 13.31 79.7%

A-B Letter 16 6.2 99.95% 100% 99.7% 99.8% 48.8 65.0 72%
Ionosphere 34 10.0 98.9% 99.3% 92.0% 90.6% 81.5 118.9 68.5%

training. We also develop a new feature ranking criterion, in
which not only the class separability of individual features but
also the correlation between features are taken into account, to
make the pruning process more effective. Furthermore, during
the SFS searching process, an active training set is maintained
as the estimated candidates of the support vectors. Whenever
SVM has to be trained, it is done over the reduced training set.
In this way, the number of samples participating in a single
optimization procedure decreases and therefore the training
process is expedited. We test the proposed method on both
artificial and real-world data sets, and the experimental results
demonstrate its effectiveness and efficiency.
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